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STUDY OF A SINUSOIDALLY PERTURBED FLOW IN A LINE

INCLUDING A 90 ° ELBOW WITH FLEXIBLE SUPPORTS

By Robert J. Blade_ William Lewis 3

and Jack H. Goodykoontz

SUMMARY

Sinusoidal acoustic pressure and flow perturbations and related

mechanical vibrations were investigated experimentally and analytically

in a system consisting of a long hydraulic transmission line with a 90 °

elbow at the midpoint. The line was supported in a manner that allowed

longitudinal movement of the downstream half. A sinusoidal perturbation

was imposed on the mean flow at the upstream end by means of small oscil-

lation of a throttle valve about a partially open mean position. The

downstream end was terminated in a restricting orifice. Pressure and

flow perturbations at both ends of the line and the longitudinal vi-

bration velocity of the downstream pipe section were measured for a range

of frequencies.

A method of analysis is presented that is applicable in general to

lines consisting of sections of straight pipe connected by bends and sup-

ported in a manner permitting longitudinal motion of one or more sections.

This method of analysis_ which consisted of treating the vibrating pipe

section as a viscous-damped spring-mass system and neglecting attenuation

of the acoustic waves_ was applied to the experimental system with results

generally in good agreement with the experimental measurements.

The pipe motion_ driven by unbalanced pressure forces on the elbow

and the downstream orifice plate_ was found to be a major factor in de-

termining the resultant fluid-wave motion. The significant effect of

the elbow was solely to provide coupling between the pipe motion and

wave motion. Thus, the elbow per se caused no appreciable reflection,

attenuation_ or phase shift in the fluid waves.

INTRODUCTION

Acoustic pressure and flow perturbations in long hydraulic lines

often are of importance in the operation of various fluid systems°



Amongthese are hydraulic control and rocket propellant systems. If the
hydraulic lines are of sufficient length, they will makea significant
contribution to the overall dynamic response of the system. Various
analyses (refs. i and 2) of such systems have been madethat showthe im-
portance of acoustic effects. Lightweight fluid systems for missile and
space applications are more susceptible to acoustic disturbances because
of increased mechanical flexibility. Analysis of acoustic effects, there-
fore, is of increasing importance in the design of these fluid systems.

The results of an experimental study of sinusoidal perturbations of
flow in a straight pipe rigidly supported at one end (ref. 3) showthat
longitudinal wave motion in the material of the pipe wall has a signifi-
cant effect on the fluid pressure and flow perturbations at frequencies
near the quarter-wave resonant frequency of the pipe. A different type
of mechanical vibration mayoccur in hydraulic lines not rigidly sup-
ported, containing bends or elbows. A section of the line mayvibrate
longitudinally as a whole in response to unbalanced mechanical forces
resulting from the difference in the fluid pressure perturbations at the
two ends of the section.

In this report a method of analysis is proposed to describe acoustic
pressure and flow perturbations and associated mechanical oscillations in
a fluid transmission line in which a section of pipe is allowed to vibrate
longitudinally as a whole. A system in which such vibration could occur
was investigated experimentally at the NASALewis Research Center, and
the results are comparedwith the analysis of the samesystem.

The experimental system consisted of a 68-foot-long stainless-steel
line (lo00-in. O.D. by 0.065-in. wall) containing a 90° elbow at the mid-
point. The line was supported rigidly at the upstream end_ and flexible
supports were used at the downstreamend and at intervals along the line.
The experiment covered a range of disturbance frequencies from 0.5 to
about 75 cycles per second, meanflow speeds from 5 to lO feet per second,
and meanline pressure from 50 to 225 pounds per square inch. The aver-
age amplitude of the sinusoidal perturbation was approximately 5 pounds
per square inch for pressure and 0.13 foot per second for fluid velocity.
The fluid used was JP-_ fuel. As in the system of reference 3, the flow
was modulated by meansof a hydraulic servo valve at the upstream end
and was restricted by an orifice at the downstreamend.

!
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EXPERIMENTAL SYST]_4

Apparatus

Flow system. - The essential parts of the open-loop pumped-return

flow system used in the experiment are shown in figure !. The fluid

(JP-4) was forced through the test line by a gear pump, and the mean
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flow rate was measuredby meansof a rotametero Hydraulic accumulators
were placed between the pumpand the test line to provide steady supply
pressure. The discharge from the test line was submergedin a constant-
height vented tank. Fluid was returned to the supply tank by intermit-
tent operation of the return pump.

Flow disturbance _enerat0r. - Sinusoidal perturbations of flow and

pressure were induced in the system by means of an electrohydraulic servo-

actuated throttle valve located Just upstream of the test lineo The

throttle was oscillated sinusoidally about a partially open mean position

in response to an alternating voltage° A porous-metal filter was placed

between the throttle and the test line to reduce turbulence.

Test line. - The test line, made of stainless-steel tubing, 1.00

inch in outside diameter with a 0.06S-inch wall thickness, was 68 feet

long and had a sharp 90 ° elbow at the midpoint. A schematic diagram of

the test line is shown in figure 2. The upstream end was attached to

the throttle valve, which in turn was rigidly fastened to the ground°

The downstream end was attached to the outlet tank by means of a neo-

prene diaphram, which allowed axial motion but suppressed transverse

motion. Between the ends, the test line rested on horizontal transverse

wires spaced at 1-foot intervals. The test line was terminated in an

orifice plate containing 34 holes 0.040 inch in diameter. The instru-

ment sensing elements and the orifice plate were attached rigidly to the

end of the tube. Thus, the test-line suspension allowed longitudinal

oscillation of the downstream half of the line (section CE, fig. 2) in-

cluding the instruments and orifice plate.

Instrumentation. - Instrument sensing elements to measure pressure

and flow perturbations were located at stations A and E (fig° 2). The

pressure sensors were commercial flush-diaphragm units. Pressure pertur-

bations in pounds per square foot were obtained by means of static cali-

brations of each unit with its associated amplifier. The flow-

perturbation sensors were hot-wire anemometers specifically designed for

use in liquid (ref. 3). It was not practicable to obtain static cali-

brations of the hot-wire sensors because the response is linear only for

small perturbations and the sensitivity is a function of the mean fluid

velocity. For this reason separate normalizing factors were determined

for each run to make the measured impedance equal the calculated value

for frequencies from 2 to 4 cycles per second.

The displacement of position of the downstream half of the line was
measured with a linear variable differential transformer located at

station D. The displacement amplitude in feet was obtained by means of
a static calibration of the differential transformer and its associated

amplifier. The vibration velocity V in feet per second was calculated

from the sinusoidal displacement for each frequency. Provision was also

made for the measurement of mean gage pressure at both ends of the line.



The output of the pressure, fluid-flow, and pipe-displacement sen-
sors was in the form of alternating-current electrical signals with phase
and amplitude determined by the perturbation of the quantity being
measured° These alternating-current signals were amplified and supplied
to a commercial transfer-function analyzer which indicated and partially
analyzed the data° This instrument effectively rejects all frequencies
(noise_ distortion, etc.) except the reference frequency and indicates
the reference-frequency signal in resolved-component form.

The transfer-function analyzer consisted of two units: (i) an
oscillator, which supplied (a) the signal for the servo-throttle flow-
disturbance generator and (b) a four-phase reference voltage to the re-
solved componentindicator, and (2) a resolved-component indicator,
which indicated the in-phase and quadrature (90° out of phase) components
of the pressure, flow, and displacement signals with respect to the
reference voltage.

!
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Procedure

The flow system was operated at constant mean flow rate and pressure

until conditions had stabilized. Mean gage pressure readings were taken

at stations A and E, and the mean flow rate was read on the rotameter.

The servo throttle was operated at a series of frequencies from 0.5 to

about 75 cycles per second° The amplitude of the throttle area vari-

ation was maintained constant over the entire range of frequencies for

each run and was kept small relative to the mean open area to avoid non-

linear effects. At each frequency the values of the in-phase and quadra-

ture components of the five dynamic parameters (upstream and downstream

pressure and flow, and pipe position perturbations: PA, PE, QA, QE, and

Xp) were read in succession on the resolved-component indicator° The

mean pressure drop across the downstream orifice was constant during

each run, but was changed from run to run to vary the orifice impedance.

The following dimensionless transfer functions were computed from

the data to show the relations _ong the measured quantities° (All

symbols are defined in appendix A.)

(i) The dimensionless upstream acoustic impedance:

PA
zA = Z-_A

(i)

(2) The interterminal pressure ratio:

¢ PA (z)



(3) The dimensionless downstream mechanical admittance :

ZoSVT = - (3)

In the foregoing equations Z 0 is the characteristic acoustic impedance

of fluid waves in the pipe given by

(4)
Zo= S

The value of the sonic speed c used to determine Z0 was 5750

feet per second. This value was determined by correcting the value used

in reference 3 (3850 ft/sec) for the difference in mean temperature be-

tween the two series of experiments (approx. 16 ° F). The rate of change

of sonic speed with temperature (-6 ft/(sec)(°F)) was obtained from data

on the density and bulk modulus of hydrocarbons given in reference 4.

The density of the fluid was 1.5 slugs per cubic foot, and the internal

area of cross section of the line was 0.00415 square foot; hence, Z0

was calculated to be 1.36><106 pound-second per (foot) 5.

ANALYSIS

Method of Analysis

The proposed method of analysis is applicable in general to hy-

draulic transmission lines composed of sections of straight pipe con-

nected by bends or elbows in such a manner that some longitudinal motion

of one or more sections is permitted. It is assumed that one end of the

line is terminated in a known impedance_ that is_ the relation between

pressure and flow perturbations at one end of the line is assumed known.

If a sinusoidal perturbation of flow or pressure_ or both 3 is impressed

at the other end of the line_ the resulting perturbations of flow and

pressure at all points in the line and the perturbation of position of

the movable pipe section(s) will be periodic at the same frequency and

approximately sinusoidal. The dynamic behavior of the system is to be

described by means of transfer functions giving the relations among the

various perturbations in terms of phase and amplitude as a function of

the impressed frequency. Methods of calculating these transfer functions

are described in the following analyses.

Assumptions. - Analysis of the system is facilitated by making the

following simplifying assumptions:

, (i) Undamped sinusoidal acoustic waves exist in the fluid.
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(2) Longitudinal expansion or compression does not occur in the
pipe walls.

(5) The longitudinal motion of a section of pipe vibrating as a
whole can be described by the equations for a perfect viscous-damped
spring-mass system.

(_) The meanfluid flow speed is negligible comparedwith the sonic
speed.

(5) The terminating impedanceat one end of the line is knownas a
function of frequency°

The applicability of the method is limited to systems in which the
assumptions are approximately fulfilled. For example_ the assumption of
undampedwaves may exclude systems employing highly viscous fluids or
very small diameter lines. The assumption of no longitudinal compression
and expansion is equivalent to neglecting sonic waves in the pipe wall.
(The sonic velocity in steel is about four times that in JP-4). The
applicability of the results is therefore limited to frequencies well
below the lowest natural resonant frequency of longitudinal wavemotion
in the walls of any straight-pipe section not rigidly supported at both
ends°

Outline of method of analysis. - Essential steps in the analysis

procedure are the following:

(i) The mechanical forces on the moving pipe section(s) are ex-

pressed in terms of the pressure perturbations at the two ends and are

related to the pipe velocity perturbation by means of the mechanical im-

pedance of the moving pipe_ regarded as a viscous-damped spring-mass

system°

(2) The acoustic equations for undamped sound waves are used to re-

late the pressure and flow perturbations at the two ends of each straight-

pipe section (fixed or moving). The flow perturbations are defined with

respect to a fixed coordinate system_ and the mean fluid flow speed is

neglected.

(5) Equations based on continuity of pressure and flow including

the flow equivalent of the pipe motion are used to relate conditions in

adjoining pipe sections.

(4) The relation between flow and pressure at one end of the line

is defined by an expression for the impedance in terms of frequency°

(5) The equations obtained in the preceding steps are solved to ob-

tain expressions for the desired transfer functions.

!
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Analysis of Experimental System

Pressure and flow variations introduced by the oscillating throttle

valve and reflected at the exit orifice set up a wave pattern in the line

in which the pressure perturbation at the elbow is generally different

from the exit pressure perturbation. This pressure difference causes

the section of pipe from C to D (fig. 2) to vibrate longitudinally, and

the vibratory motion modifies the flow perturbations.

The description of fluid waves in the line by means of the usual

equations of acoustics requires that the flow perturbations be referred

to a fixed system of coordinates. Accordingly, fixed reference stations

B, C, and D (fig. 2) have been selected. Stations B, C, and D are intro-

duced for use in the analysis, whereas stations A and E represent the

locations of the instruments attached to the pipe. Station A, like B,

C, and D, is fixed with respect to the ground as the pipe is rigidly

supported at that point9 but station E, the exit measuring station, is

not fixed but moves with the pipe. Measured values of flow at station

E, therefore, represent flow with respect to the moving pipe.

Steps (i) to (5) of the analysis procedure outlined previously were

applied to the system shown in figure 2 as follows:

Step (i): Relation of _ressure perturbations to pipe motion. - The

pressure perturbations at the ends of pipe section CE provide a net longi-

tudinal driving force in the direction C _ E given by

F --S[PE(1- - PC]

where S(1 - e) is the area of the solid portion of the orifice plate

(excluding the holes). Being flexibly supported, section CE responds

with a longitudinal vibration velocity V. The transfer function re-

lating F to V is the mechanical impedance Zm:

F S[PE(1 - e) - PC ] (6)
Z :V= v

For an ideal viscous-damped spring-mass system the mechanical impedance

is given by

Zm = D + i _fM - _-_ (7)

where D is the resistance coefficient 3 M the mass 3 and

ness.

K the stiff-

Step (2): Pressure-flow relations in straisht-pipe sections. - In

the section of pipe from A to B the pipe vibration is at right angles to



the flow and therefore is assumedto have a negligible effect on the
longitudinal wave motion. In the section from C to D the pipe motion is
parallel to the flow and, except for frictional effects which are neg-
lected in the analysis, has no influence on the wave motion in a fixed
coordinate system. In the pipe sections A_ and CD, therefore, the equa-
tions for undampedsound waves in uniform pipes are applicable, and the
following sets of relations (derived in appendix B using assumptions (i)
and (4)) are obtained.

Equations relating conditions at opposite ends of section AB:

PB = PA cosh i_ - ZOQ A sinh i_

ZoQ Z = ZoQ A cosh i_ - PA sinh i_

PA : PB cosh i_ + ZoQ B sinh i_

Z0Q A : Z0Q B cosh i_ + PB sinh i_

Equations reiating conditions at opposite ends of CD:

PD = PC cosh i_ - ZOQ C sinh i_

ZOQ D = ZOQ C cosh i_ - PC sinh i_

PC = PD cosh i_ + ZoQ 9 sinh i_

ZoQ C = ZOQ D cosh i_ + PD sinh i_

(8)

(9)

The dimensionless frequency parameter

(8) and (9) is defined by

Z
2_f --

2

C

appearing in equations

(10)

This parameter represents the phase shift (in radians) occurring in the

distance Z/2 for a single sinusoidal wave train of frequency f and

propagation speed c. Introducing the wavelength h in equation (i0)

gives

= (it)

showing that _ is proportional to the ratio of line length to wave-

length°

!
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Step (3): Continuity relations for pressure and flow. - The ve-

locity of the fluid at station C is the sum of the velocity of the fluid

with respect to the pipe and the velocity of the pipe. The velocity of

the fluid with respect to the pipe is the same at C as at B; therefore,

the flow-continuity relation at the elbow is

% % + v (12)
S S

The assumption that there is no damping at the elbow is expressed by

PC = PB (13)

Similar equations describe the conditions of continuity between

stations D and E as follows:

PD = PE

v (is)
S S

Ste_ (_): Impedance at station E. - The imaginary component of the
orifice-plate impedance, caused by inertial reaction to changes in flow_

has been calculated to be between i0 -_ and 10 -5 times the characteristic

impedance. To a very close approximation, therefore_ the exit-orifice

impedance ZE is real and equal to the slope of the steady-state

pressure-flow curve at the operating pressure. Thus_ the relation be-

tween pressure and flow perturbations at the exit station is

z E (16)
%

Step (5): Determination of transfer functions. - It is desirable

to describe the characteristics of a transmission line in terms of re-

lations among the variables that are observable at the terminals of the

line. These variables are PA, QA, PE, QE, and V. The relations among

these variables are described by dimensionless transfer functions in-

cluding the dimensionless upstream impedance zA = PA/ZoQA, the inter-

terminal pressure ratio ¢ = PA/PE, and the dimensionless downstream me-

chanical admittance T = Vpc/P E. Expressions for these functions were

found from equations (6) to (16) by means of algebraic and trigonometric

manipulation shown in appendix Bo The subscripts x and y are used

to denote the real and imaginary components of a complex number; for ex-

ample, ¢ = Cx +i¢y. The results are given in terms of the dimensionless
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frequency parameter
zm is defined by

(eq. (i0)), the dimensionless mechanical impedance

Z_
: _ (17)

pcS

_ud the dimensionless exit impedance zE is defined by

ZE ZES

ZE = Z0 pc (18)

Equations for calculating the four transfer functions are

Vpc_ =Tx=
PE /x

Zm, x(l - 6 - cos _) - (Zm, y + sin _)

z2 + (z + sin _)2
m,x m_y

sin

zE

I _ Zm _ y

PE/y

+ sin _)(i - e - cos _) _ Zm; x sin

zE

Zm2 x + (Zm, y + sin _)2

(19)

(pP--AE)x= Cx : cos 2_- Ty(sin 2_- sin _)

(pPAE)y = Cy = SinzE2_
-- + Tx(sin 2_ - sin _)

(2o)

Yx - CoSzE2_ + Tx(COS 2_ - cos _)I
_y = sin 2_ + Ty(COS 2_ - cos _)

( PA)x CxWx+¢yWY

PA)y ¢7_x- Cx_yZ--_ = ZA, y= _x2+ _y2

(21)

(22)

!
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Equations (19) to (22) together with the definitions of _, Zm, and zE

(eqs. (i0), (17), and (18)) show that the performance of the system can

be calculated if the parameters p, c, S 3 and _ are given and Zm and

ZE are known as functions of frequency. The physical and geometrical

constants D, c, S, and _ can be presumed to be known, and the down-

stream impedance ZE can be found from the orifice curve.

The mechanical impedance Zm of the moving pipe section was found

from equation (7) using for M the actual mass of pipe section CE in-

cluding the fittings and instrument sensors at station E. The stiffness

of the suspension K was obtained from static measurements of force and

displacement, and the resistance coefficient D was calculated from the

dynamic test data using values of PE and V for a narrow range of

frequencies about the natural resonant frequency. Thus, the pipe motion

was represented by a viscous-damp@d spring-mass system with the following

parameters:

Mass 3 M, slug ......................... 0.82

Stiffness, K, lb/ft ....................... 5450

Resistance coefficient_ D, lb-sec/ft ............... 21

Undamped natural frequency, cps ................. 13

Dimensionless damping factor, _ ................ 0.16

RESULTS AND DISCUSSION

The analytical results are presented in figure 3 in the form of

phase and amplitude of the several transfer functions plotted against

the dimensionless frequency parameter _ for values of the dimension-

less downstream impedance from 0.6 to 1.3. The functions presented in

figure 3 are the dimensionless downstream pipe-motion admittance

Voc/P E calculated from equation (19), the interterminal pressure ratio

PA/PE from equation (20), and the dimensionless upstream imoedance

PA/ZoQA from equation (22). The mechanical resonant frequency of the

pipe section was 13 cycles per second, and the corresponding value of
is 0.256 _.

Experimental values of phase and amplitude of vpolPE,PA/ZoQA , and

PA/PE are shown in figures A, 5, and 6 plotted as a function of the

frequency parameter _. The plotted points in figures 4 to 6 were de-

termined from the experimental data_ and the solid curves are the ana-

lytical results obtained by interpolation from figure 3. The dotted

curves show for comparison the calculated response for a stationary

straight line of the same total length. The agreement between the re-

sults of experiment and analysis is considered excellent° The experi-

mental data points follow the pattern of response given by the moving-

pipe analysis_ and both show substantial departures from the calculated

response of a stationary line.
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Effect of the Elbow

The generally good agreementbetween the experimental and analytical
results shownin figures 4 to 6 clearly demonstrates that the effect of
the elbow on the dynamics of the fluid system arises primarily from the
interaction between mechanical and acoustic disturbances. The elbow pro-
vides a coupling mechanismwhereby fluid pressure perturbations give rise
to longitudinal forces on the piping, and pipe motion modifies the fluid
flow perturbation. The analysis was based on the assumption that this
was the only effect, that is, that the elbow, if stationary, would not
cause any reflection, attenuation, or phase shift in the fluid waves.
The agreement is sufficiently good to warrant the conclusion that the
effect of the elbow per se was negligible comparedwith the effect of
pipe motion.

!

Mechanical Response of Pipe

The fact that the pipe velocity was substantially as calculated for

an ideal viscous-damped spring-mass system is shown by the results in

figure 4. The admittance function VDc/P E is referred to the downstream

pressure perturbation PE instead of the effective driving pressure

[PE(I - _) - Pc]. Thus, the curves of figure 4 represent the response of

a second-order system to a variable driving force.

Effect of Pipe Motion on Fluid Waves

The general nature and extent of the effect of pipe motion on the

upstream impedance and the interterminal pressure ratio can be shown by

a comparison with the calculated response of a rigid system. The latter

case, shown by the dotted lines in figures 5 and 6, was determined by

setting the pipe velocity equal to zero, making T = 0 in equations (20)

and (21). This procedure gives the familiar equations for undamped fluid

waves in a stationary straight line. A comparison of the dotted and solid

curves in figures 5 and 6 shows that pipe motion has a significant effect

on both the upstream impedance and the interterminal pressure ratio

throughout the range of frequency included in the experiment. Typical
maximum differences between the moving and stationary systems are 25

percent and 25 ° (0.14 _). The details of the curves are not of general

interest because they apply only to the specific system used in the ex-

periment. However, these results demonstrate that longitudinal pipe

motion produces significant chamges in the fluid-wave pattern, and that

grave errors may be incurred if the effect of pipe motion is neglected.

The method of analysis used herein provides a correct description of the

response of the system.
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CONCLUDING REMARKS

The results of this investigation show that, in a fluid transmission

line in which longitudinal motion of a section of piping is allowed,

pressure forces will make this section of pipe move_ and the resulting

motion will have a significant effect on the dynamic response of the line.

The method of analysis proposed herein allows the calculation of this

effect by treating the moving pipe as a lumped-parameter vibrating system

interacting with undamped acoustic waves in the fluid. Application of the

method is limited to frequencies at which distributed-parameter vibrations

in the material of the pipe walls can be neglected. The elbow per se

caused no noticable reflection, attenuation_ or phase shift in the fluid

wave s.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, Feburary 15, 1962
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APPENDIXA

SYMBOLS

Note: Quantities that are in general complex are so noted.)

c sonic speed_ ft/sec

D effective viscous-damping resistance coefficient_ ib-sec/ft

F v# otive force, ib (complex)

f frequency, cps

total length of line_ ft

M mass of vibrating portion of pipe_ slugs

P pressure perturbation, ib/sq ft (complex)

Q volume-flow perturbation, cu ft/sec (complex)

S area of cross section_ sq ft

V vibration velocity_ ft/sec (complex)

Xp perturbation of pipe position_ ft (complex)

Z acoustic impedance_Z = P/Q, lb-sec/ft 5 (complex)

Z0 characteristic acoustic impedance, Z0 = pc/S, lb-sec/ft 5

Zm mechanical impedance, Zm = F/V_ lb-sec/ft (complex)

z dimensionless acoustic impedance, z = Z/Zo, (complex)

zm dimensionless mechanical impedance, zm = Zm/pcS, (complex)

dimensionless frequency parameter, _ = _fZ/c_ radians

¢ ratio of area of holes in orifice plate to interior cross section
of pipe

!

_0
CO



15

co
oG

!

g

P

T

¢

Y

Sub script s :

A_ Bj C,D, E

x

Y

+

dimensionless damping factor, _ = D/2_/_

stiffness of pipe suspension, ib/ft

wavelengt h_ ft

density, slugs/cu ft

dimensionless downstream mechanical admittance defined by

T --pcV/P E (complex)

interterminal pressure ratio defined by ¢ = PA/PE (complex)

dimensionless interterminal admittance defined by

Y = ZoQA/P E (complex)

stations shown in fig. 2

real part of complex number

imaginary part of complex number

wave moving downstream

wave moving upstream
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APPENDIX B

DERIVATIONS

Derivation of Acoustic Equations Relating Pressure and

Flow Perturbations at Two Points in a Tube

It is shown in textbooks in acoustics (ref. S) that the relation

between the pressure and flow perturbations in an undamped sinusoidal

wave train moving in the positive direction in a tube of infinite length

and uniform area is

P+

_ = zo (m)
%

For a similar wave train moving in the negative direction_

P
(B_,)

q- U

If a sinusoidal perturbation of flow or pressure is introduced any-

where in the system, the pressure and flow perturbations at any station

may be represented by the sum of two sinusoidal wave trains moving in

opposite directions, the relative amplitude and phases of the two com-

ponents being determined by the boundary conditions. Equations relating

the pressure and flow perturbations at stations A and Bj separated by a

uniform section of tube of length Z/2, are,developed as follows.

Adding the effects of the positive- and negative-moving waves gives

the resultant pressure and flow perturbations at station A:

PA = P+A + P-A (B3)

o_ = %A + Q-A (B_)

Using equations (BI) and (B2) with (B4) gives

Z oQA = P+A - P-A (B5)

and from (BS) and (B3),

!

CO

1 Zo%) (B6)P+A = _ (PA+
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I (PA - ZOQA) (B7)P-A =

By using the convention that the direction from A to B is positive and

the assumptions that the waves are undamped and the mean flow speed is

negligible compared with the sonic speed, there is obtained for the

positive-moving wave at station B:

P+B = P+A e-i_ (B8)

where _ is the lag in phase at B compared with A. In the ease of the

negative-moving wave the phase at B leads A by the same angle; therefore,

P-B = P-A e+i_ (B9)

The total-pressure perturbation at B is

PB = P+B + P-B = P+A e-i_ + P-A e+i_

Using equations (B6) and (BT),

i -i_ 1 ZOQA )e+i_PB : _ (PA + ZOQA)e + _ (PA -

PB = PA cosh i_ - Z0Q A sinh i_ (BI0)

The flow perturbation at B is found in a similar way:

Q+B = Q+A e-i_

Q-B = Q-A e+i_

Multiplying by Z0, adding and substituting from equations (BI) and (B2),

ZOQ B = ZOQ_B + ZoQ_ B = p+A e-i_ _ p_A e+i_

Substituting from equation (B6) and (B7) and simplifying give

Z0Q B = Z0Q A eosh i_ - PA sinh i_ (Bll)
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Solving equation (BIO) and (Bll) for PA and ZoQA

PA= PB cosh i_ + Z0QB sinh i_

ZoQA = ZoQB cosh i_ + PB sinh i_

gives

Equations applicable to the section from C to D are obtained by changing
subscripts.

Details of Derivation of Equations (19) to (22)

From equations (6) and (17),

vpc- 1 [FE(l_ _) _ PC] (_14)
Z
m

Substituting the expression for PC from equation (9) gives

Vpc = i [pE( 1 _ c) - (PD cosh i_ + ZOQ D sinh i8)]
z m

Using equations (14), (15), and (16),

zo +vszoZm E(1 - e) - E cosh i6 + _EE

Using equations (4), (17), and (18) and rearranging result in

sinh i_1 PE (1Vpc i +. Zm = _m - c - cosh i_

(_15)

The transfer function T is given by (eq. (3))

(B16)

sinhzE i__) (BI7)

sinh i_
i - £ - cosh i_

: v__: ZE (B18)
PE Zm + sinh i_

!

_o
co
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Letting T = Tx + iTy and zm = Zmx + iZmy and separating the real
and imaginary parts,

Tx + iTy =

Zmx(l - c - cos _) sin _ (Z + sin _)

zE my

2
z + ( + sin _)2
mx Zmy

I _(Zmy z sin _ ]

mx
+ sin _)(i - e - cos _) -

z E

+ I Z2mx + (Zmy + sin _)2 (19a)

From equation (9),

PC : PD cosh i_ + ZoQ D sinh i_ (B19)

ZoQ C = Z0Q D cosh i_ + PD sinh i_ (B20)

Substituting from equations (12) to (16) in (BI9) and (B20), respectively_
and simplifying using equation (5) and (18) result in

PB = PE cosh i_ + Z 0 + VS sinh i_ = PE osh i_ + + sinh i

(B21)

Zo% : _ZoVS+Zo\z{+

From equation (8),

VS> cosh i_ + PE sinh i_

(B2z)

PA = PB cosh i_ + ZoQ B sinh i_
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Substituting from equations (B21) and (B22),

PE - _ + sinh i cosh i13

+ ZE + cosh i_ + sinh i_ - sinh i_

and simplifying,

]

¢ = cosh i2_ + --_-sinh i2_ + T(sinh i2_ - sinh i_)
z
E

(B 3)

Separating real and imaginary parts_

Cx + icy _ cos 2_ - Ty(sin 2_ - sin B)

+ i _i_ 2_

[ zE + Tx(Sin 2_ - sin _

From equation (8),

(20a)

Z0Q A : Z0Q B cosh i_ + PB sinh i_

Substituting from equations (B21) and (B22) and simplifying as before,

+T)cosh i_ + sinh i_ - T] cosh i_

+ osh i_ + _E + sinh i slnh i_

= sinh i2_ + i---cosh i2_ + T (cosh i2_ - cosh i_)
zE

(B2 )

_X + i_y = 1----COS 2_ + Tx (cos 2_ - cos _)
zE

+ i [sin 2_ + Ty(COS 2_- cos _

Equation (22) was obtained directly from

zA = ¥

(21a)

!

_J
c[
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